bit map graphics - Definition. Was ist bit map graphics
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist bit map graphics - definition

THE TRANSFORMATION OF THE UNIT INTERVAL THAT MAPS X TO 2X MOD 1
Dyadic map; 2x mod 1 map; Bernoulli map; Doubling map; Bit shift map; Bit-shift map; Sawtooth map

Bit array         
ARRAY DATA STRUCTURE THAT COMPACTLY STORES BITS
Bit vector; Bitvector; Boolean array; Boolean vector; Bitstring; Bitset; Bit vectors; Bit string
A bit array (also known as bit map, bit set, bit string, or bit vector) is an array data structure that compactly stores bits. It can be used to implement a simple set data structure.
bit string         
ARRAY DATA STRUCTURE THAT COMPACTLY STORES BITS
Bit vector; Bitvector; Boolean array; Boolean vector; Bitstring; Bitset; Bit vectors; Bit string
<programming, data> An ordered sequence of bits. This is very similar to a bit pattern except that the term "string" suggests an arbitrary length sequence as opposed to a pre-determined length "pattern".
8-bit color         
  • 8-bit color, with three bits of red, three bits of green, and two bits of blue.
METHOD OF STORING IMAGE INFORMATION IN A COMPUTER'S MEMORY OR IN AN IMAGE FILE, SO THAT EACH PIXEL IS REPRESENTED BY ONE 8-BIT BYTE
Eight-bit color; 256 colors; 8bit colour; 8-bit colour; 8 bit colour; 256 color; 256 colour; 8 bit color; 256 colours; 256-color
8-bit color graphics are a method of storing image information in a computer's memory or in an image file, so that each pixel is represented by 8 bits (1 byte). The maximum number of colors that can be displayed at any one time is 256 or 28.

Wikipedia

Dyadic transformation

The dyadic transformation (also known as the dyadic map, bit shift map, 2x mod 1 map, Bernoulli map, doubling map or sawtooth map) is the mapping (i.e., recurrence relation)

T : [ 0 , 1 ) [ 0 , 1 ) {\displaystyle T:[0,1)\to [0,1)^{\infty }}
x ( x 0 , x 1 , x 2 , ) {\displaystyle x\mapsto (x_{0},x_{1},x_{2},\ldots )}

(where [ 0 , 1 ) {\displaystyle [0,1)^{\infty }} is the set of sequences from [ 0 , 1 ) {\displaystyle [0,1)} ) produced by the rule

x 0 = x {\displaystyle x_{0}=x}
for all  n 0 ,   x n + 1 = ( 2 x n ) mod 1 {\displaystyle {\text{for all }}n\geq 0,\ x_{n+1}=(2x_{n}){\bmod {1}}} .

Equivalently, the dyadic transformation can also be defined as the iterated function map of the piecewise linear function

T ( x ) = { 2 x 0 x < 1 2 2 x 1 1 2 x < 1. {\displaystyle T(x)={\begin{cases}2x&0\leq x<{\frac {1}{2}}\\2x-1&{\frac {1}{2}}\leq x<1.\end{cases}}}

The name bit shift map arises because, if the value of an iterate is written in binary notation, the next iterate is obtained by shifting the binary point one bit to the right, and if the bit to the left of the new binary point is a "one", replacing it with a zero.

The dyadic transformation provides an example of how a simple 1-dimensional map can give rise to chaos. This map readily generalizes to several others. An important one is the beta transformation, defined as T β ( x ) = β x mod 1 {\displaystyle T_{\beta }(x)=\beta x{\bmod {1}}} . This map has been extensively studied by many authors. It was introduced by Alfréd Rényi in 1957, and an invariant measure for it was given by Alexander Gelfond in 1959 and again independently by Bill Parry in 1960.